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INVESTIGATION OF WING CHARACTERISTICS AT A MACHE NUMBER
OF 1.53. IIT — UNSWEPT WINGS OF DIFFERING
ASPECT RATIO AND TAPER RATIO

By Jack N. Nielsen, Frederick H. Matteson,
and Walter G. Vincenti

SUMMARY

As the third part of a general study of wing characteristics at
supsrsonlc speed, wind—tummel tests were conducted of seven models
forming two series of wings: (1) a series of taper ratio 0.5 and
differing aspect ratio and (2) a series of aspect ratio 4 and differ—
ing teper ratio. All wings had an lsosceles—triangle airfoil section
S5-percent—thick and an unswept midchord line. Measurements were made
of 1ift, drag, and pitching moment at a Mach number of 1.53 and =
Reynolds number of 0.75 million. The sxperimental results were
analyzed and compared with the characteristics calculated by means of
linear theory.

The serodynamic parameters generally variled with aspect ratio and
taper ratio in the manner indicated by the linear theory. The majority
of the aerodynamic paramesters showed considerable variation with aspect
ratio in the low—aspect—ratio range only. The parameters showed no
appreclable change with taper ratio for the aspect ratio of 4. (This
does not preclude the possibility of appreclable taper-ratio effects
at lower aspect ratios.)

The measured values of the lift-curve slope were in close accord
with the theoretical values for all the wings, but the experimental -
angles of zero 11ft were comnslstently higher than those given by
linear theory mainly because of higher—order pressure effects neglected
in linsar theory., Both lift-curve slope and angle of zero 1lift
increased wilth increase in aspect ratio.

The experimental values of moment—curve slope indicated positions
of the aerodynamic center forward of those glven by theory because of
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hlgher—order pressure effects and boundary-layer, shock-wave Ilnter—
action near the tralling edge. The measured moment coefficients

at zero 1lift were in good accord with the negative values calculated
by linear theory. The aserodynamic center moved forward signlificantly
with decrease in aspect ratilo,.

The drag curves were closely parabolic. The minimum édrag
increased slightly with increase in aspect ratio, and the drag-rise
factor decreased. No decislve comparison could be made between
experiment and theory for minimum drag because of the large but
undetermined effects of support-body interference and skin friction
upon this parameter. Rounding the leadling edge of a rectangular
wing of aspect ratio 4 to a radius of 0.25 percent of the chord
Increased the minimum drag coefficlent by about 27 percent, but had
no mesgurable effect on the 1ift and moment characteristics.

The experimental maximum 1ift-drag ratio remasined between 5.6
end 6.4 over the complete range of plan forms.

INTRODUCTION

This report is the third and last of a series of reports
covering a general study at & Mach number of 1.53 of wings differ-
ing 1n aspect ratio, taper ratlo, sweep angle, and sirfoll sectlon.
Part I of this serles (reference 1) is a report on the effects of
airfoll-section modifications on the aerodynamic characteristics
of triangular wings of aspect ratlio 2. DPart IT of the serles
(reference 2) is a report on the effects of sweep on the aerodynamic
characteristics of wings of taper ratio 0.5.

In the present report, the merodynamic characteristice for two
feamillies of unswept wings are discussed, the flrst famlly consisting
of four wings of taper ratioc 0.5 and dlffering aspect ratlio, and
the second family consisting of four wings of aspect ratio L and
differing taper ratio. All wings have lsosceles—triengle sectlons
in the streemwise direction (meximum thickness at the midchord with
& flat lower surface) and an unswept midchord line. With the
exception of the datae for one wing, all results are for a Reynolds
number of 0.75 mllllion., The experimental results for the wings are
discussed in detall and compared with the calculated results of
linear theory.




NACA RM No.

A 21

cg
Cp

CDcq,

ABEO6 ~
SIMBOIS

Primsry Symbols

aspect ratic (b2/S)

effective aspect ratlo

wing span

wing chord measured in strsa,mwise direction

mean aserodynamic chord ( ‘/b czd.b

mesn geometric chord (S/b)

wing root chord

wing tip chord

total drag coefficient

pressure drag coefficlent of cambered surface due to
pressure fileld of flat—plate wing

pressure drag coefficlent of cambered surface due to
own pressurs fileld

friction. drag coefficlent
rise in drag coefficient above minimum drag (GD—CDmin>
minimum total drag coefficient

drag-rise factor

pressure drag cosfficient due to thickness
1if% coefficlent

11ft coefficlent for maximum 1ift-drag retio

chenge in 1ift coefficlent from value for minimum drag

o



Subscripts
L=0

D=min

NACA RM No. A8BE06

lift-curve slope (per radian unless otherwise specified)

ritching-moment coefficient about centrold of plan-form
area with mean aerodynamic chord as reference length

moment-curve slope
angle ratio [aaL/(o—ap—pmin) ]
maximum 1ift-drag ratio

free—stream Mach number

Reynolds number based on mean geometric chord of wing
wling plan-form area

distance back from leading edge of root chord to
aerodynamic center

distance back from leading edge of root chord to
centroid of plan—form ares

meximum camber ratio of stresmwise wing section
angle of attack

rearward 1lnclination of force vector on flat-plate wing
of same plan form as given complete wing

rearvward inclinstion of the change 1in resultant force
corresponding to the change in 1ift coefficient ACT,

sweep angle of leading edge, degrees
sweep angle of midchord line, degrees

sweep angle of trailing edge, degrees

value at zero 1lift

value at minimum drag

value at zero angle of attack

1
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St

refers to primsry wing (i.e., flat—plate wing of same
plan form as given complete wing)

refers to fronmt-half component wing (i.e., flat—plate
wing having same plan form as reglon shead of ridge
line) :

refers to rear-half component wing (1l.e., flat-plate
wing having ssme plan form as region behind ridge line)

Additional Symbole Used In Appendix
upper—surface pressure coefficlent
lower—surface pressure coefficient
denotes real part of a complex function

difference between lower—surface and upper-surface
pressure coefficients due to primary loading

difference between lower—surface and upper-surface
pressure coefficlents due to tips

streamwise distance measured from leading apex of wing
lateral dilstance msasured from wing root chord
cotangent of leading—edge sweep angle (Ctn Ag)

tangent of polar angle measured clockwise from wing tip

.tangent of polar angle measured counterclockwlse from

wing root chord (y/x)
wlng semispan

reglon of influence of wing tips on plan-form area

EXPERIMENTAT. CONSIDERATIONS

The investigation was conducted in the Ames l— by 3—foot super—

gsonic wind tunuel No, 1. The experimental procedure employed
throughout the general study 1s described in detall in Part I of the
present series of reports (reference 1). Except where specifically
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noted, all details of model construction and support, experimental
technique, and reduction and correction of data may be taken as
;dentical in the present report with those of Part I.

Models

Tests of two serles of models are included in the present report.
Photographs of the two series are shown in figures 1(a) and 1(b), and
a picture of a wing mounted on the support body in the tunnel 1s shown
in figure 1(c). Drawings of the models are glven in figures 2(a) and
2(b), and a summary of the principal geometric characteristics of the
models 1s glven in table I. A drawing of the support body is glven in
Part I. All models had an area of 9 square inches.

The first wing series, called the aspect-ratlo serles, includes
four models having a uniform taper ratlio of 0.5 and verying 1n aspect
ratio from 6 to 1. In order of decreasing aspect ratlo, the models
of the first series are designated U-1, U2, U~3, and U-4, the letter
U designating that the midchord line is unswept. The second wing
series, called the taper—ratio series, lncludes four models having &
uniform aspect ratio of 4 and varying in taper ratio (ratio of tip
chord to root chord) from 1 to O, In order of decreasing taper ratio,
the models of the second series are designated U-5, U-2, U-6, and U-7.
Model U-2 of taper ratio 0.5 and aspect ratlo 4 1y common to both
geries. All models have isosceles~trlangle airfoll sections in the
streamwise direction and an unswept midchord line.

The models were constructed of hardened tool steel, and in the
main tests the leading and trailing edges were malintained sharp to
less than 0.,00l1-inch radius. In specilal tests to investlgate the
effect of leadlng-edge rounding, the leading edge of model U-5, a
rectanguler wing, was rounded successively to radil of 0.25 and
0.50 percent of the chord.

Corrections and Precision

For reasons discussed in Part I, no corrections have been applied
to the data for the tare and interference effects of the support body.
In other words, the experimental results are in each case for the
wing-body combination rather than for the wing alone. In order to
eliminate the effect of variation in balance—cap lnterference, the
drag date have been reduced, as in Part I, to a common support-body
base pressure equal to the statlc pressure of the free stream. The
angles of attack have been corrected for stream angularity as

coNMEDENTT;
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explained 1n Pgrt T.

The precision of the present results 1s the same as that of the
results of Part I (p. 13). Twist, which was apprecisble for the
wings of Part IT, was negligible for the present wings., Bendlng was
apprecliable, however, for wing U-1, for which the tip chord was
deflected three—~quarters of an inch sbove the root chord at a
Reynolds number of 0.46 million and an angle of attack of 8°. This
bending Iimited the Reynolds number for this wing to 0.46 million.
Although the bending was appreclable, there was no twist and no
spanwise varlation of the angle of attack.

THEORETTCAL. CONSIDERATIONS

General expressiong for the 1ift, pitching-moment, and drag
curves deduced from the assumptions of linear theory are glven in
Part I. TFor the wings of the present report, the values of Individual
terms In these expressions have been calculated Insofar as practicable.
Existing theoretical methods, in fact, permlt first—order determina—
tion, exclusive of the effects of viscosity, of the asrodynamic
characteristics of all the wings. The necessary integratlons to
determine the moment characteristics-of wing U-l would have entailed
so much work, however, that they were not carried out. The theoretical
calculations are otherwlse complets.

As indicated in Part I, a glven wing at angle of attack msy be
resolved into a symmetrical wing at zero angle of attack, a mean
camber surface at zero angle of attack, and a flat 1ifting surface
at the given angle of attack. According to linear theory, effects
of thickmness, camber, and angle of attack may then be considered
geparately in determining the pressure distribution — and hence the
serodynamic characteristice — of the given wing. The 1i1ft, pitching-
moment, and drag curves are defined completely to the accuracy of
the linear theory by the following seven quentities: &Cr/de, -0
4Cm/dCL, Cmr—gs CDmin, ACD/(ACL)2 and CrLp_pipe The detalled ’
methods used 1n calculating these quantities will be considered in
the succeeding sectlons. (The detailed calculations were made in
each case for an equlvalent wing at & Mach number of ‘\/5 s and
the characteristlics of the actual wing at the test Mach number of
153 were derived by means of the transformstion rule described in
reference 3.)

Lift and Moment Curves
Ag Indicated by linear theory, the 1i1ft and moment curves are

4y
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straight lines. The slopes dCr/da and dCp/dCI, depend entirely
on the pressure distribution on an inclined flat plate having the
game plan form as the given wing.

The values of dCrL./da and dCp/dCT, for ell the present wings
except U-4t were determined directly from the integrated results of
reference 4., The integrated results of this reference are sub Ject
to the restrictlon that the Mach lines from the leading edge of the
root chord must intersect the trailling edge, and those from the
" leading edge of the tips must intersect the trailing edge on their
own half of the plan form. For an unswept midchord line the '
restriction lmposes the condition A ¢/My2-1 >2, Wing Ul of aspect
ratio unity does not meet the condition, and the lift-curve slopse
for this wing was determined from the results of the appendix. No
determination of dCp/dCI, was made for this wing.

The intercepts C1y-—o and Cm@:O depend entlirely on the

pressure dlstribution acting on the mean camber surface at zero
angle of attack. The values of these quantities were determined
from the followlng equations tasken from Pert IT:

e (D[ (@) @

onano = T [ () o) + (2). (R +Z-20) Jeo)

These equations were derived by applying the superposition principle
to the mean camber surface. In thelr present form they apply only
to wings with the present type of mean camber surface having a
supersonic ridge line at the midchord. The values of (dCL/dm)R in

equations (1) and (2), as well as the values of (dCL/da)p to be

used in subsequent equations, were determined from the results of
reference 4 for all the wings except Uk, For wing U-, (aCr/da)y

was determined analytically ueing the well-lkmown result of Busemann
for the pressure fleld on the tip of a rectangular wing, and
(dC1r./da)p was determined amalytically by the method given in the

appendix. The quantities and Cpp_g were determined from the

foregoing values with the aid of equations (2) and (4) of Part I.
The values of Cpyr_n are very nearly equal to the values of Cmy=0
for the present wings.

CONFIDENTIAL.
g-_""“ 3&*?*
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Drag Curve

On the basis of linsar theory, the drag curve is parabolic and
can be written

ACD 2
Cp = C =2 (erc
D = ODpin + Tmg (L LD=min> (3)

For the present wings, which necessarily have no leading—edge
suctlon because of theilr supersonic leading edges, Part I glves for
the minimum drag coefficient the equation

2

dCp
CDmin = CDp + CDy + CDge — m <CLa,=O + da“) (%)

In calculating CDpy, from equation (4) no skin friction was
congldered, and the theoretical wvalues of CDpin thus represent only
Pressure drag. The values of Cpy, the thickress drag coefficient,

were taken from the charts of reference 3, and the values of Chec

and dCD,,/da were determined from the following equatlons taken
from Part II:

owo -4 [(B),0 (B,- (),] o

=e@®,-®,]

The values of CDcc and CDt are equal for each of the present
wings except U-4. It can be shown that, for Cpy to be equal to

chc’ the increment in CDcc or CDt attributable to the tips must

be ldentlcally zero. As discussed in reference 3, the increment in
Cpy attributable to the tips is zero for wings of the present type

when the Mach line originating at the leading edge of the tip
intersects the tralling edge on 1ts own half of the plan form. For
an unswept midchord line, this restriction also imposes the limita-

tion A4/Mo2-1 2 2, so that for wing U4 Cp,, and Cp; are not
equal.
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With regard to the value of dCp,,/da, reference 4 shows that
(dCL/da)F equals (dCL/da)R for all the present wings except U-k,
For wing U-4 this equality was found in the analytical determinations
of (dCr/da)y and (&C1/da)y. Thus, from equations (1) and (6),
dCDgg /.  equals Cly—o &nd the last term in eguation (4) for the

minimum dreg cosefficient is simply (ClL,-0)2/(dCL/da). This
component of the drag 1s very small and could for all practical
purposes be neglected, at least for the present wings.

The second quantity in equation (3) for the drag coefficient 1s
ACp/(4C1,)2, the drag-rise factor. It was determined, as in Part II,
from the relationship :

ACp kg

(AC1)2  (a01/ax) ()

where kg 18 equal to the rearward inclinatlon of the force on the
flat 11fting surface as & fraction of the angle of attack. In
accordance with the discussion of leading-edge suctlion on page 17 of
Part I, kg 1s unlty for the present wings with supersonic leading
edges, so that the drag-rise factor for each wing is simply the
recliprocal of the lift-curve slope.

The remaining fixed quantity in equation (3) for the drag curve
is Clp_min, Wwhich according to equation (9) of Part IT is

Yo\ T /4Cr, acy,
e = ()| ()~ (&)s ®
For all the present wings (dCL/da)g equals (dCL/da)y; therefore,
CLDp=min 1i& zero. :

To summarize the limltatlons of the foregoing equations,
equations (1), (2), (5), (6), and (8) apply only to uniformly tapered
wings with supersonic rildge lines at the mldchord and the present
type of mean camber surface. Equations (4), (5), (6), and (8) arse
subJect to the limitation that the leading edge be supersonic.

RESULTS AND DISCUSSION

The experimental values of the 1ift, drag, and pitching-moment
coefficlents together with the lift—drag ratio are given for wings
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U-1 to U-T in figures 3(a) to 3(g), respectively. As in Parts I and
IT, the coefflclents are based on the plan-form area of the wings,
including that portion of the plan form blanketed by the support body.
Pltching-moment coefficlents are taeken gbout a transverse axis through
the centroid of the plan form with the mean aerodynamlc chord as
reference length. All the data presented are for a test Mach number
of 1.53 and, except for the.case of wing T-1, are for a Reynolds
number of 0.75 million based on the mean geometric chord. The data
for wing U-1 are presented for a Reynolds number of 0.46 miliion, the
highest attalnable with this wing because of bending. It 1s believed,
however, that the data for wing U~l are comparsble with the data for
the other wings of the aspect—ratlo series. Subsequent cross plots
bear out this belief, The results of testing wing U~5 of rectangulsr
plan form with the leading edge rounded to 0.25 percent chord ars
glven in figure k.

Theoretical curves obtalned as described in the preceding
gsection are included in figures 3(a) to 3(g) with the exception of
the moment curve for wing U-Li. The curves shown for the drag
coefficient and the 1ift—-drag ratio include only pressure drag.

The values of the aserodynamic parameters determined from the
faired curves of figure 3 are summarized in table II at the end of
the text together with the calculated theoretical values. In each
ingtance, the value determined from the falred curve is given first
and the corresponding theoretical value is indicated in parentheses
directly below. The theoretical values of the sectlon parameters
calculated by means of the avallable higher—order, two-dimensionsl
theories are also summarized in table IT.

To facllitate comparison and to show trends, the experimentel
and theoretical values of the aserodynamic parameters are cross—
plotted against aspect ratio for the aspect—ratio series and against
taper ratio for the taper—ratio series in figures 5 to 1lh. It
should be remembered that, in the case of the experimental quantities,
the points represent values determined from s faired curve and not
actual test points. On the cross plots for the aspect-ratio series,
the values of the aerodynamic coefficlents determined for the airfoil
section by the linear theory are also indicated. These values
correspond to A = « and represent asymptotic values for this wing
geries.

It should be remembered throughout the succeeding discussion
that the experimental results are in each case for a wing-body
combination, while the theoretical characteristics are for the wing
alone. As explained in Part I (p. 10), the effect of the slender
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support body used here 1s probably small insofar as the experlmental
1ift and moment are concerned. It may, however, be considerable
with regard to the minimum drag. The minimum drag results must
therefore be regarded as primarily of qualitative significance in
comparison wlth the theoreticel values. For the present wings, the
offect of the support body is probably less than for the wings of
Part I, since the fractlon of the total wing area enclosed by the
support body 1s less for the present wings than for the wings of
Part I,

Lift

Although the 1lift curves of figure 3 show a sllight tendency
toward upward curvature at high angles of attack, they may be
considered essentially linear. (On the basis of first— and second—
order sectlon theories, the 1ift curve 1s linear., However, the
shock—expansion method indicates upward curveture at the high 1lift
coefficients.,) The 1ift curves of the present wings are thus well
represented by the slope and intercept values of table II. The
experimental and theoretlcal values of lift-curve slope and angle of
zero 11ft are cross—plotted in figure 5 for the aspect—ratio seriles
and in figure 6 for the taper-ratio series.

Lift—curve slope.— Figure 5(a) shows that the experimental
lift-clrve slope for the aspect-ratio seriles asymptotically approaches
the section value at high aspect ratios and tends toward zero at an
aspect ratio of zero. For the taper-ratio series, figure 6(a) shows
no appreciable variation of lift-curve slope with taper ratlo either
experimentally or theoretically. The effect of taper ratio would,
however, probably be appreciable for wings of lower aspect ratlo.

For both wing serles the experimental and theoretical values are in
excellent accord.

The relatively low values of lift-curve slope at low aspect
ratlos are caused largely by a loss of 1ift within the tip Mach
cones. As polnted out in the appendix, this tip effect causes a
reduction in theoretical lift—curve slope for wing U~k at M = 1.53
from 0.0552 without tip effect to 0.0337 with it, a reduction of
about 39 percent,

It 1s probeble that the almost exact agreement noted between
experiment and theory is fortulitous. The effect of boundary-layer,
shock-wave interaction at the trailing edge (see Part II and later
discussion of angle of zero 1lift) is normally to reduce the experi-
mental values of lift-curve slope slightly below the theoretlcal
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values for Inviscid flow, so that precise agreemsnt is not to be

expected. Also, because the experimental data are for wing-body

combinations, soms difference between the experimsntal values and
the theoretical values for the wing alone 1s to be antlicipated.

Angle of -zero 1lift.-~ For ths aspect—ratio gerlies the valuss of
ar—o Shown in figure 5(b) vary from about 0.5° at an aspsct ratio of
6 to sbout —0.5° at an aspect ratio of unity. Thus the effect of
decrease in aspect ratio is to cause a decrease 1n angle of zero 1ift
for wings of the present cambsred airfoil section. WNo appreciable
effect of taper ratio on the value of ay_g for wings of aspect ratio
4 i1s exhibited by the curves of figure 6(b). The theoretical trends
of aj_g wlth changes in aspect ratlo and taper ratlo follow closely
The experimental *rends, but the experimental values are about 0.5o
greater than the theoretlcal values.

The -decrease 1ln angle of zero 1ift with decrease in aspect ratio,
both theoretically and experimentelly, 1s readlly explainsd by the
following relationship obtained with the help of equation (1):

Yo \ [1 _ (acr/da)g J (9)

0 = * (7/ (acr/am) p

In this equation (dCL/da)y 1s the lift—curve slope of the rear—
half wing, which has twice the aspect ratlo of the primary wing. In
the high—aspect—ratio rangs, there 1s little effect of aspect ratilo

on lift—curve slops, and the lift—curve—slope ratio in equation (9)

is nearly unity. Comsequently, in this renge or_g 1s small. In

the low—aspect—ratlio range, where lift—curve slope changes apprsciebly
wlth aspect ratio, the rear-half component wing will have a much
greater slope than the primary wing. Therefore, in this range the
lift—curve—slope ratio will be considerably greater than unity, and
ar-g Will be large and negative.

The difference between the experimental and theoretical values
of ay_n 18 due largely to higher-—order pressure effects neglected
in linear theory. As in table IT, the section value of %0 is 0°
on the basis of linear theory, while 1t 1s 0.36° on the basis of
second—~order theory. Thus for wings of high aspect ratio, which
are subject to approximately two—dlmenslonal flow over much of their
area, most of the above dlfference between experiment and theory can
be ascribed to the inability of linear theory to predict accurately
the sectlon value of the a ft. This shortcoming of
the linear theory has also beerfmg% n Partes I and IT.



1k NACA RM No. A8EO6

Another effect which contributes to the 0.5° difference between
the experimental and theoretical values of o_5 18 interaction
between the upper-surface boundary layer and the oblique tralling-
edge shock wave as reported originally by Ferri (reference 5). The
upper—surface boundary layer approaching the tralling edge separates
because the pressure rise through the tralllng-edge shock wave ls
propagated forward through the boundary layer. Behind the point of
separation the pressures are higher than they would be for an
unseparated layer. On a cambered section, this effect occurs on the
upper surface even at small ‘angles of attack and causes - to be
higher than it would be in the absence of viscosity. As willl be seen,
the Interaction also hes an influence on other aserodynamic gquantitles.

Pitching Moment ) L

Straight lines have been falred through the moment data of
figure 3 for all the wings, even though there is a slight, consistent
tendency toward upwerd curvature at negatlive 11ft coefficilents. (In
Part IT it was surmised that thils tendency may be due to a small,
gystematic error in the moment meassurements near zero 1ift.) The
moment characteristics of the present wings are well represented by
the slope and intercept values of the falred curves as tabulated 1in
table IT. The experimental and theoretical values of moment—curve
slope and moment coefflclent at zero 1l1ft are cross—plotted in
figure 7 for the aspsct—ratio series and in figure 8 for the teper—
ratlo series.

Moment—curve slope.-~ The data of figure 7(a) indicate that
de/dCL increases significantly with decrease in aspect ratio,
corresponding to considerable forward movement of the aserodynamic—
center position. For instance, the value of 0.056 for dCp/dCy, of
wing U-1 (aspect ratio 6) places 1ts aerodynamic center 5.6 percent
of the mean aerodynamic chord in front of the cemntrold; whereas the
aerodynamic center of wing Uk (aspect ratio unity) is 20 percent
of the mean serodynamic chord in front of the centroid. This trernd
18 also exhibited by the theoretical curve in figure T(a), but the
experimental curve is displaced upward from the theoretical curve
by a nearly constant smount. No appreclable change in moment—curve
slope due to changes in taper ratio ere shown in figure 8(a). The
experimental curve is again displaced vertically from the theoretical
curve by an amount approximately equal to that for the aspsct-ratlo
gerles. :

The tendency for the aerodynamic center to move forward with'
decrease in aspect ratio is due primarily to the appreciable losses
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of 1ift that occur over the rear portion of the wing within ths tip
Mach cones. This loss of 1ift, which 1s described in the appendix,
becomes relatively greater as the aspect ratio decreases and causes
the forward movement of the aerodynamic center.

A large part of the observed difference between the experimental
and theoretical values of dCp/dC], for the wings of large aspect
ratio, which are subJected to approximately two—dimensional flow over
most of thelr plan form, can be attributed to higher—order pressure
effects neglected in linear theory. As a numerical 1llustration,
consider wing U—1, which has an experimental moment—curve slope of
0.056 compared with = theoretical valus of 0.007, a difference of
about 0.050. As seen 1n table II, the effect of including second—
order pressure terms in the calculation of dCp/dCy, for the present
alrfoil sectlon is to increase the theoretical value of dCy/dCr,
from zero to 0.032, about two—thirds of the observed difference. It
is probable that half or more of the difference between experiment
and theory for the other wings is due to second—order pressure
effects. Boundary-layer, shock—wave interaction near the trailing
edge may contribute to the remainder. This effect causes a local
loss of 11ft which Iincreases wilth angle of attack, thereby increasing

dCp /dCT..

The moment data of figure T(a), which indicate forward movement
of the asrodynamic center with decrease in aspect ratlo for constant
Mach number, may be interpreted as illustrating the similar forward
movement to be expected as the Mach number is decreased for a wing of
given aspect ratio. Such an interpretation follows from the result
of linear theory that the aerodynamic—center position for a wing of
the aspect—ratio serles depends only on the effective aspect ratio
A4/Mo2-1, meking a decrease in Mach number at constant aspect ratio
equlvalent to a decrease 1in aspect ratio at constant Mach number.

Moment coefficient at zerg 1ift.— Both the experimental and
theoretical values of Cmy_ shown in figures T(b) and 8(b) exhibit
no sppreciable change wlth elther aspect ratio or taper ratio. The
experimentael values are, however, less negative than the theoretical
values by a small but conmigtent amount. The difference cannot be
attributed to higher—order pressure effects, since there is no
appreciable difference between the sectlon vglues of Coy.o calcu—
lated on the basis of linear theory and on the basis of second-order
theory. It is probable that the difference is due to boundary-layer,
shock-wave interaction. Any loss of 1ift near the trailing edge aBs
a result of interaction of the upper—surface boundary layer and the
trailing-edge shock wave, such as was discussed in connection with

Ay
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the angle of zero 1lift, would tend to increase the pitching moment at
zero 1ift. - :

Drag and Lift-Drag Ratilo

Analysis of the date indicates that the experimental drag curves
of figure 3 have in each case approximately parabolic shape as pre~
dicted by equation (3). Thus, the present drag curves can be
defined by the values of the minimum drag coefficient CDmin’ the
1ift coefficient for minimum drag Crp_p4,, 8&0d the drag-rise factor
ACp/(ACL)2. The experimental and theoretical values of these quan—
tities are summarized in table II, together with the values kg,
CLopt’ and (L/D)max. The various quantities involved in discussion
of the drag and lift—drag ratio have been cross—plotted against aspect
ratio and teper ratio in figures 9 to 1k, In all cases the theoret—
ical values are for no skin friction.

Minimum drag coefficient.— The experimental values of CDmin
in figure 9(a) show small but definite decrease with decrsase in
aspect ratio, but the corresponding theoretical values show little
variation with aspect ratio. No eappreciable effects of taper ratio
on CDmin are indicated either experimentally or theoretically by
the curves of figure 10(a), although the results of reference 3
indicate that appreciable effects of taper ratio would occur at lower
aspect ratios. Generally speaking,the experimental values of Cp '
are 0.004 to 0.007 higher than the theoretical velues.

A large part of the difference between the experimental and
theoretical values of n can be ascribed to skin friction.
Although no determinstion of the actual areas of leminar and turbu—
lent flow was made for the present wings by the liquid—film method as
in Part I, it is thought that the flow is mostly laminar because of
the small arees of adverse gradlent for most of the wings. At a
Reynolds number of 0.75 million, laminar skin friction would account
for an increment in C of about 0.003. The remainder of ths
0.00k to 0.007 differencenmay be attributed to the partlally compen—
sating effects of support—body drag, mutual interference between the
wing and support body,and shock-wave, boundary-leyer interaction.

The effect of rounding the leading edge of the rectangular wing
(U-5) is shown by a comparison of figure 3(e) for the sharp—edged
wing with figure 4 for the wing with a leading—edge radius of
0.25 percent of the chord. (This amount of rounding gave the present
isosceles—triangle section & nose radius-comparable to that for an

0 it SRS
. I
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NACA Iow—drag section of equal thickness ratio.) Comparison of the
flgures shows that rounding had the appreciable effect of increasing
CDmin by an increment which was about 27 percent of cDmin for the

sharp-edged wing. Further rounding of the leading edge to a radius

of 0.50 percent of the chord further increased cDm:Ln by the same
Increment. There was no noticeable effect on the other mesasured aero-
dynamic quantities. This is in contrast to the results of Parts I
and II where the minimum dreg of wings with a highly swept (subsonic)
leading edge was not altered by rounding.

Lift coefficient for minimum drag.— The experimental values of
Clp=min 1in figure 9(b) exhibit some variation with aspect ratio;
the experimental values in figure 10(b) exhibit practically no varia—
tion with taper ratio. Quantitatively, the values of Clpemin VBYY
from 0.02 to 0.0k Por the seven present wings. These experimental
results are not in accord with the theoretical result that CLD=min
is constant at zero for all the wings. (It is interesting to note
that over the wlde range of plan forms covered by the present wings
®D=min veried within the marrow limits of 0.7° to 0.9°.)

Highsr—order pressure effects neglected in linear theory account
for part of the difference between ths experimental and theoretical
values of Crp_p4n- With reference to table II, it is seen that

cLD=min for the present section is zero on the basis of linear
theory; whereas it is 0.0l% on the basis of the shock-expansion
method. It is also likely that boundary-layer, shock-wave interaction
contributes a significant part of the observed difference. At all
positive angles of attack for the present wings, there is a shock
wave at the tralling edge on the upper surface and an expansion on
the lower surface. The separation which results from interaction
between the boundary layer and the shock wave on the upper surface
will cause an increase in pressure over the rear part of the surface
and a decrease in drag. As the angle of attack increases from zero,
this effect Increases, tending to makes the reduction in drag
progressive. This effect, which is in opposition to the ususl
increase In drag with increase In angle of attack, will have consider~
able influence on the value of CLD =min® Thus it is possible to say

that both higher—order pressure effects and iInteraction have
appreciable influence on Crp_p¢,. These effects are of importance

since they are fefle_cted in the value of the meximum lift—drag ratio.

Drag—rise factor.— The rise in drag as the 1ift coefficient

departs from the value for minimum drag is specified for a pa'ra.'bolic
drag curve by the value of the drag-—rise factor ACp/(ACp)2. The

_
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values of ACp/(ACr)2 have been determined, following the method of
Part II, by evaluating the slope of a stralght line faired through

the experimental points on plots of Cp — Cp y, versus (CL—CLD=minF3.
The values so obtained are plotted against aspect ratio in figure 11(a)
and agailnst taper ratio in figure 12(a).

As pointed out 1in Part ITI, the drag-rise factor given by linear
theory depends on the lift—curve slope and the rearward inclinstion of
the change in resultant force corresponding to the change in 1lift
ACLe Thils latter quantity 1s specified by the angle ratio kg, which
1s defined as the inclination of the change in resultant force divided
by the accompanying change 1n angle of attack, that is,

AL ~ NACp/AcT,
" (opemin)  (0mopemin)

kg, - (10)

As 1n Part II, average experimental values of k; have been deter—
mined in accordance with this definition by evaluating the slopes of
straight lines faired through plots of the experimental wvelues of
ACp versus (ACp)X(omop_piy). To the extent that the experimentel
dreg curve 1s parabolic and the experimental 1ift curve is linear,
the experimentel values of ACH/(ACp)Z, k,, and dCp/do will
satisfy equation (7). The experimentel values of k, for the

- aspect—ratlo series are given in figure 11(b) and the velues for the
taper—ratio serles are glven in figure 12(b). The theoretical value
of kg, which is evaluated as iIndicated just after equation (7), is
unity for all of the present wings.

An examination of figures 11(b) and 12(b) reveals thet there is
no significant variation of k; experimentally or theoretically
wilth elther aspect ratio or taper ratio. The experimental values
are greater than the theoretical value of unity but by never more
than 10 percent. This Indicates that no leading—edge suction is
developed by the present wings in accordance with the prediction of
theory for wings with a supersonic leading edge. The result shows
that the rearward inclination of the change in resultant force
corresponding to ACp, i1s, in fact, slightly greater than the corre—
sponding change In angle of attack. This condition may be due to a
slight increase in skin friction with increasing angle of attack.

Figure 11(a) shows that experimentally ACD/(ACL)Z decreases
at a decreasing rate with increasing aspect ratio and that the
theoretical and experimental values are in excellent accord, The
theoretical and experimental values of ACD/(ACL)2 in figure 12(a)
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show no change with taper ratio and are also in excellent accord.
The close agreement between experiment and theory for the drag-rise
factor 1s an over—all consequence of the facts that the 1ift curves
are linear, the drag curves are parabolic, and the theoretical and
experimental values of kg and dCL/da are in close accord. Since
the drag-—rise factor 1s Inversely proportionsl to the lift—curve
slope when kg 1is unity (equation (7)), the experimental variation
of ACD/(AC1,)2 with aspect ratio shown in figure 1i(a) is simply a
reflection of the experimental variation of dCr/de noted in
figure 5(a).

Lift—drag ratio.— For a parabolic drag curve the meximum 1ift—
drag ratlo 1s glven by

ONF e @

sl ]| o |

where the optimum 1ift coefficient 1s given by

CDmin 2
= 1
Lopt / [ ACp/(ACT)2] +<CLD““’1“> (12)

Equations (11) and (12) demonstrate the dependency of (L/D)pax on
the three primery characterlistlcs which geomstrlcally determine the
drag parsbola, Cp ; , ACD/(ACL)®, end CLp_, . The experimental
values of these quantities satisfy, the above equations approximstely
since the experimental drag curves are nearly parsbollic. Theoretical
velues of ClLopt and (L/D)max have been determined by the above

formulas and are given together with the experlimental values of these
quantitlies in table II, It should be remembered that the effect of
skin friction has been omltted in computing the theoretlcal values.
The theoretical and experimental values are cross—plotted against
aspect ratio in figure 13 and against taper ratio in figure 1k.

An examinstion of figures 13 and 14 reveals that the experimental
lift—drag ratio varies from 5.6 to 6.4t. Above an aspect ratio of 2
the experimental maxlimum lift~drag ratio i1s nearly constant, dut
below this point 1t tends to decrease wilth decrease 1in aspect ratlo.
In the high-espect—ratio range the experimentel lift-drag ratios are
less than the theoretical ones, but at an aspect ratio of unity the
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experimental value 1s greater than the theoretlcal. Theoretically
and experimentally, the optimum 1ift coefficient increases at first
with aspect ratio and then becomes constant at the higher aspect
ratios., However, the experimental values of Cr,,i are consist-
ently greater than the theoretical values for all aspect ratios.
There 1s little variation either theoretically or experimentally of
(L/D)pax and CLopt With taper ratio. For all taper ratios the
experimental values of (L/D)may are consistently less than the
theoretical values, and the experimental values of CLopt are
conslstently greater then the theoretlcal.

The verlatlion of the theoretical values of CLopt with aspect
ratio can be explained by equation (12). In this equation Clp-min
has a secondary effect on CLopt3 and, since theoretically Cpyin
does not vary much with aspect ratio in the present range, changes
in CL,p &re primarily due to change in ACD/(ACL)Z. Thus the
theoretgcal veriatlon of CLopt in figure 13(b) is a reflection of
the theoretical variation of ACD/(ACL)2 1in figure 11(a). The
variation of (L/D)mgx with aspect ratlo can similarly be explained
by equation (11) in terms of the variation in drag-rise factor,
optimum 1ift coefficient, and 1ift coefflclent for minimm drage.

The differences between the theoretlical and experimental values
of CLopt are due primarily to the differences in theoretical and
experimental values of CDmin' This follows from equation (12),
since CLp_pmyn has little effect on CLy,y and since the theoreti—
cal and experimental values of A.C])/(ACL)g are in good accord.
Likewise, from equation (11), the differences between the theoreti-
cal and experimental values of (L/D)max are due to differences in
the theoretical and experimental values of (CLopt‘CLD=min)' If
boundary-layer, shock—wave interaction and higher—order pressure
effects 1increase CLp_min &above the theoretical value less than
gkin frictlon increases CILopt, then the experimental lift—drag
ratlo will be less than the theoretical. This is the case for all
the wings except U-4. For this wing the effect of increasing
CLp=min 18 so favorable that the experimental (L/D)max 1s greater

oven than the theoretical (L/D)may wlthout skin friction.

The present wings with camber have approximately twlce the
theoreticel minimum pressure drag as the same wings would have if
they were uncambered. The uncambered wings would heve minimum drag
at zero 1ift coefficlent; whereas the cambered wings have thelr
minimum drag experimentally at a positive 1ift coefficient.
According to equations (11) and (12) camber would thus tend to
decrease (L/D)mgxy because of the increase in CLopt accompanying
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increase in CDyyyn, but would tend to increase (L/D)max because
of the increase in CIp_yn. These two effects are largely compen—

sating. The use of cambered sections in the present investigation
thus does mot appreciably reduce (L/D)mex &8 compared with what
would probably be obtalnsd for uncambered wings of the same thickness.

CONCLUSIONS

Tests were conducted at a Mach number of 1l.53 and a Reynolds
number of 0.75 milllon of seven wing models having isosceles—trilangle
wing sections wlth a maximm thickness of 5 percent. The wings, which
all had unswept midchord lines, formed a wing serles of aspect ratio L
and various taper ratios and a wlng serles of teper ratio 0.5 and
various aspect ratlos. The investigation afforded the following
conclusions: :

l. The aerodynemic paramesters varied with aspect ratio and
taper ratlo in the general manner indicated by theory.

2. The msjority of the serodynamic paramsters showed consider—
able varlatlion with aspect ratlio in the low-aspect-ratlo range only.
The parameters showed no appreciable change with teper ratio for an
aspect ratio of 4. (This does not preclude the possibility of
appreciable taper—ratio effects at lower aspect ratios.)

3. For all the wings, the 1ift curves were limear, and the
experimental and theoretical lift—curve slopes were in close accord.
The lift-curve slope Increased with increase in aspect ratio.

k, The experimental angles of zero lift were about ép higher
than those glven by the linear theory mainly because of higher—
order pressure effects neglected in the llnear theory. The angle
of zero lift increased from negatlve to positive values with increase
in aspect ratio.

5. The moment curves were approximately linear. The experi-—
mental slopes indicated positions of the asrodynamlc center forward
of the positions glven by theory primarily because of higher—order
pressure effects and boundary-layer, shock—wave interaction near the
tralling edge. The aerodynemic center moved forward slgnificantl
with decrease 1n aspect ratilo.

6. The measured values of the moment coefficient at zero 1lift
di1d not vary appreciaebly with elther aspect ratlo or taper ratio,
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and were in good accord with the negative values calculated by
llnear theory.

7. The drag curves were nearly parabolic. The minimum drag
increased slightly with increase in aspect ratio. No declsive
comparison could be mede between experiment and theory for minimum
drag because the undetermined effect of support—body interference
and skin friction was known to be large.

8. The theoretical and experimental drag-rise factors were
in close accord. The experimentel drag—rlse factors increased wilth
decrease in aspect ratio.

9. The experimental values of maximum lift-drag ratio varied
from 5.6 to 6.lke

10. Rounding the leading edge of the rectanguler wing to a
radius of. 0.25 percent of the chord increased the minlmum drag
coefficient by about 27 percent but had no measurable effect on
the 11ft and moment characterlstilcs.

Ames - Aeronautical Laboratory,
National Advisory Committee for Aeronsutics,
Moffett Fleld, Calif. '

APPENDIX
DETERMINATION OF LIFT-CURVE SLOPE FOR WING U~k

The results of reference 4, which have been used to determine
the theoretical lift—curve slopes of all the present wings except Ulh
applies to wings for which the Mach line emanating from the leading
edge of the tilp sectlon intersects the trailing edge on its own half
wing. For wing U-4, which does not fulfill this condition, a method
suggested by Lagerstrom and applied by Cohen (reference 6) to highly
swept wings has been used to determine the lift-curve slope.

The primary loading on the wing APy 1s taken as that corre—
sponding to an infinite triangle, the leading edges of which include
the leading edges of the wing. Within the tip Mach cones, the vertices
of which are the extremities of the wing leading edge, there is
induced by the tips a decrement in loading APt below the primary
loading. It is to determine this decrementel loading that the method
suggested by Lagerstrom 1s used. With refersnce to the areas shown
in figure 15, an expression for the lift—curve slope can be written
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fAPads1+fAPaasz+fAPadsa féz—tdst
0 _ Jsg; St

da (a1)

The first three integrals represent the positive contrlbution of the
primary loading to the lift-curve slope, and the last integral
represents the negative contribution of the decremental loadling
induced by the tips.

Primsry Loadlng Due to Infinite Triangle

For 1ifting surfaces with a supersonic leading edge, the upper—
and lower-surface pressures are lndependent, and are equal In magni-—
tude and opposite in sign. The lower surface of the infinite
triangle giving the primary loading has s poslitive pressure and is
inclined at 4« radlans to the flow. It 1s known from the resulis
of reference 7 that two seml-infinite pressure sources extending from
the leading apex to infinity, as shown in figure 15(a), will produce
congstant—slope wedge boundariles behind them., If the strength of the
sources 1s adjusted so that the streamwise slope of the wedge 1s
+o radians, then the pressure field on either face of the wedge will
be the ssme as that on the lower. surface of the inflinlte triangle.
Thus, from the results of reference T,

2a ctn Ay —[1-(ctn Ag) (y/x) —z [ 1+(ctn Ag) (3/x)

P1=R.P. {cos 1{: :|+ cos [ J}

7t :;c'bn"’Ao—l ctn Ag —(y/x) ctn Ag + (y/x)

(a2)
Since Pg — Pr, and APg = P1, =Py, the primary loadlng per radlan
is glven by the equation
APa P, betndy o [l—(ctn A ) (T/x) :I"' cog=* [l+(c'bn Ao)(y/x)] }
. '\/c'bnon— ctn Ag — (7/x) etn Ap + (y/x)

(43)
A change of varilables 1s introduced to simplify the analysls as follows:

f =ctnag

h=;7’/1£
r
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Equation (A3) then becomss

AP Wf 1-fh )
—& = R,P. cog—1 cog—1 [ 1tfh AL
@ g [ 8 Fn,) f+h (ak)

To obbaln the contributiorn of the primary loading to the lift—
curve slope, 1t 1s necessary to evaluate the first three integrals
of equation (Al) by substituting the expression for AFs/a from
equation (A4) and using the following expressions for the differential
areas dS;, dSz, and dSs, which are taken as small triangles from
the leading apex (fig. 15(a)):

2
= 8=
as, —
2
ase = 55 | } (45)
2h2 _
2
2 (£+h)2 J

In the evaluation of the first integral, the value of h varies
from 1 to fe. For this range of h, eguatlion (A4) reduces to the
simple equallty

APB. = ,-l-f (A6)
@ yfa-l

The expresslon for d4dS,; from equation (A5) and the expression for
APg /o from equation (A6) are then substituted into the integral

glving

£
AP, 2
f _maas1=2f M 8% an (AT)
s

1 1 ;fz—l 2h2

Carrying through the integration, and substituting the limits then
glves for the first Integral



APg 4e2(f)
278 45, = (a8)
»/; 1 @ * A/£2]

In the evaluation of the second integral, the expression for
APy /a from equation (A4) is substituted into the inmtegral together
with the expression for dSz from equation (A5), and the integral
1s taken between the limits of h shown in figure 15(a). This glves

AP, 1 _ 2
f —2ass =2 f b [cos_l <l fh> + cos™ L <l+fh -,—SE dh
s, ¢ fg wa/F21 f-h f+h / |2h

2

for—s (49)

Carrying out the integration and substituting the limits glves for
the second integral

AP 2 (¢} 2_
f —2 a8, = s %z cos‘ll:i + i-) <f 21> J
s, @ 7 1/f2_.l 8 £ Cp f

_om(ed) [2 <Es?> —f:l - - <§_r> <'f2f_+l>

g f(s/cy) f — 2(s/cy)

(A10)
In the evaluatlon of the third integral, the expression for
AP, /o from equation (Ad) 1s substituted into the integral together

with the expression for dSg from equation (A5), and the integral
is taken between the limits of h shown in figure 15(a). Thus

fg
f AP, jfcrs Ig [ - <l—fh J cr2f®  gn
— dSg = 2 —_— | cos8 —_—
Sg < o mA/f2 ] f-h 2  (f+n)2
fs
T 202 .
+ 2 f ' A cos™1 (l"'fh J °r’f” an
o /221 f4+h 2 (f+n)2

(A11)
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Carrylng out the integration and substituting the limits gives for
the third integral

cog™
@ O gaffe] 2 £-2(s/cp)

f e 4. - hern2f  |2(8/cp)~E X 1- ‘é%) (%ﬂ)
S

8

. f(3_f2);i;§§)(f2—l) cos-1 [% . <i> ( == ]

£(£2—2) f V112 (8/0p)] 2—(s/cy)?

+ ———— cos™1 (:3{> + £
(£2-1) “\f 7;2: V1

_ (a12)

Decremental Loading Due to Wing Tips

+ The llines of constant load for the primary loadlng are conlcal
with respect to the leadlng apex and extend backwards to infinity.
Since the loading off the wing between rays h = fs/(focr—s) and
h =f can influence the wing pressures in region St (flg. 15(b)),
it 1s necessary to find a solution which will identically duplicate
this loading (or, considered as a decrement, will ildentically cancel
this loading), and which will have zero contribution to the wing
dowrwash, First a method of reproducing this loading with uniformly—
loaded Infinite triangles 1s consldsred.

With reference to figure lS(a),consider an infinite triangle,
the vertex of which is at A and the sldes of which extend to
infinity along lines AB and AF, This Infinite trlangle 1s
assigned the uniform loading Uf/+/f2~1, the value of the primary
loading in the interval £ >k > 1l. It thus reproduces identically
the primary loading off the wing between the line pressure source
and the Mach line. Between the Mach line and the ray h = fs/(fc,.—8),
the primary loading is less than hf/q/fa- o Negetive loading must
therefore be superimposed onto the uniform loadlng of the previous
infinite trlangle in order to reproduce identlically the primery
loading In this region. Consider the infinlte triangle, the vertex
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of which 1s at D and the sides of which extend to Infinity along
lines DF and TE, Thils triangle 1s assigned the uniform negative
loading 4(APy/a) as given by squation (Ak). Point D is then
allowed to move from point C to point E, and the negative loadings of
all the infinite triangles the vertices of which lie in this inbterval
are superimposed onto the loading of the infinite triangle with
vertex at A. The primary loasding off the wing between the Mach line
and the ray 'h = fs/(fcr—s) will then be identically reproduced.

Iagerstrom in reference U4, using the conical flow method of
Busemann, has determined the pressure. field of a uniformly loaded
infinite triangle of the present type which wlll not change the
downwash on the wing. For the infinlte triangle, the vertex of
which is at A, the loading (per radlan) 1s given by the equation

(%)0 =R.P. l"f cos“l < (A13)

The quantity (APt/d)o i3 considered as the decremsnt in wing

loading due to cancellng the primary loadlng on this Infinite
triangle. The varilsble g 1s indicated in figure 16(a). The
Infinitesimal decrement ln wing loading due to the infinite triangles
in the interval 1 >h > fs/(fcr—s) by analogy with equation (A13)
is glven as

a <%> - R.P. 4 (%2) 1 cos2 <§%§——h> (A1k)

or, using equation (Ak),

() -re it cos™ (BEMER) an  (a15)
2 £2_n2)

A/1-h= ( g+h

In evaluating the fourth and last integral of equation (Al),
the contribution to the wlng loading of each infinite triangle in
the interval 1 2> h > fs/(fcyr—s), as glven by equation (Alk), must
be integrated over 1ts region of influence on the wing, and then
the sum contribution of all the trlangles in the interval must be

‘iﬁ%ﬁ"‘-'iﬁiréé
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determined. This sum contribution is then subtracted from the contri-
bution given by equation (Al3) integrated over 1ts reglon of influence
to give the fourth integral of equation (Al) in accordance with the
equation

<Aﬁ aSt <AP’G> dSt- Ad<£}>d3t (A16)

In the first integral, (APt/a), is conical with respect to
the extremity of the leading edge, a.nd the 1ntegration over the
reglon of Influence can be conveniently made over the two triangles
shown in figure 16(a). Considering the differentisl areas as small
triangles, the followlng equallties are valid:

e S P
as, = -
* 2 (f-g)2
) (a17)
as _ Crafa d.g
57 g (£+g)2 J

Substituting (APt/a)o from equation (A13) and the differential
areas from equation (Al7) into the first integral of equation (A16)
and taking the limits from figure 16(a), gives the result

fs
o8 _up  MZop2f2 cos"l <
f+g

‘/;t <%>o % = 2/; _'\7=fr"|2=_=]_.l 2(f-g)2

+ 2 fl e Cp2f2 g2 (23f+g—f> dg
J_fs Wf21 2(f+g)2 =x f+g
fCI—.-S
(A18)

Carrying through the in'begration yields for the final value of the
first integral s
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Aﬁ = hfakzcrz Cr —1 [2S(f+l)—f0r]
‘/S'\-t-,< °°>0 %  ¢/f2-1 | 2(fcr—L8) o8 fep
_ 1 £+l flexr2s)] _ m _ [ £(f+1)
sz (=) [ 2s—fch ot [l N T(E-1) ]}
. 4fSc.2 {J s(fcp~fs—s) ( 1 )
n 4/f2-1 £+l f2cp

_ [28(f+1)~fcy] " [28(f+l)—-fcr]}
2f2c (1+F) feop

(A19)

The evaluation of the sscond integral of equation (Al6) can be
done convenlently for the two intervals of h ghown in figures 16(b)
and 16(c). For the interval s/(cy—s)>h >fs/(for—s) +the region of
Influence of the lufinlte triangles on the wing is & single triangle

such as Sg; shown in figure 16(b). The differential area is

-

_f2 [exl) s _dg |
e =3 [ 2 h] (£—g)2 (420)

For the interval 12hZ2s/(cpy—s) +the region of influence of the
Infinite triangles on the wing is composed of two triangles such as
S, amd Sy shown in figure 16(c). Tae differential areas are

N

as. =22 fcr(1ah) 8 ® _dg
T2 |72 h | (f—g)2
> (az1)
as — f2 _CI‘(3—A') 8 j]a d-g
g = — |Sxidh) B _dg
2 | 2 h (£+g)3
J
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The actual integration of (A23) was done graphically in the present
case because an analytical Integration would be very difficult and
because the .contribution of equation (A23) to the lift—curve slope is
very small,

To summarlze the procedure to obtain the lift—curve slope, the
value of the first three integrals i1n equation (Al) are obtalned from
equations (A8), (A10), and (Al2), respectively. The negative contri-
bution of the tips given by the fourth integral in equation (Al)
1s obtained by subtracting the result of equation (A23) from the
result of equation (Al9) in accordance with equation (Al6). For the
present wing, the value of the fourth integral was 39 percent of the
vaelue of the sum of the first three integrals, lllustrating the very
appreclable effect of the tips 1n reducing the lift—curve slope.
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TABLE I.— SUMMARY OF GEOMETRIC PROPERTIES OF WINGS
Wing T—L T2 T T4 T— -6 U—(

sketon ||| O | O (3| <

Ay (deg) 6.34 9.46 18,44 33.69 0 18.4L4 26.57

Ay (deg) | ~6.34 |-9.46 | -18.uk |-33.69 0 -18.4k |-26.57
A 6.000 | 4.000f 2.000| 1.000{ %.000 %.000 | L.000
ct/ep 0.5 0.5 0.5 0.5 1.0 0.2 0

b (in.) 7.348 | 6,000 L.242 3.000] 6.000 6.000 | 6.000
Tg (in.) l1.22k | 1.500f 2.121} 3.000{ 1.500 1.500 | 1.500
cg (in.) 1.269 | 1.556 2.200 3.111| 1.500 1.722 2.000
X, (1ﬁ.) 0.816 | 1.000 1.b14 | 2,000| 0.750 1.250 | 1.500
cr (in.) 1.632 | 2.000 2,828 k,000] 1.500 2,500 3.000

RNACA

Propertlies common to all wings:

5] 9 8q in.

AL _ °
2

|

At




TABLE TT.— SUIMMARY OF RESULTS OF FIGURE 3

Tift Mament: Drag Lift-drag ratio
(%E) om0 1) Ny, o ] or,
\ %% g0 0 INIOL/ gy | IR | Ppemin | M0p/(acp | e || (0/D)pex| P
[per deg]
0.0575 ~0.03k | 0.056 0.02k1 0.03 0.320 1.09 6.1 0.28
(.0579) (—.odk) (.007) || (.017L)| (0) (.302) (1.00) (6.9) (.24)
.0%60 -.033 .06 .02i0 .02 .315 1.07 6.1 .
(.0962) (—.0M) (.012) || (.o17B)| (0) (.310) (1.00) (6.8) (.2h)
.0500 —.0L0 1k L02p2 .03 .358 1.05 6.2 .25
(.0500) (—.0k7)| (.039) [ (.0r78){ (0) (.349) | (1.00) || (6.3) {.23)
.0360 —0ohk2| .200 | .0210| .ok W5LT 1.09 5.6 20
(.0337) (*) (*) (.o174])| (0) (.507) (1.00) (5.3) {.18)
L0570 -.033 079 L0245 .02 310 1.03 6.0 .29
{.0538) (—.ob3} (.020) B (.on72)i (0} {.324) {1.00) (6.7 {.23)
0565 —039] .078 .02h2 .03 -300 1.01 6.k .29
T3 (.0576) (—o0b5)| (.013) |[ (.0i78)| (o) (.303) | (1.00) || (6.8) | (.ok)
> .0560 —.037| .0% .0235 03 | | .323 1.07 6.3 .27
(.0572) (—o47) (.o20) || (.018:)] (0) (.30%) (1.00) (6.7) (.24)
Ssction .0603 ~0L3| 0 0173 0 289 1.00 7.1 K-
Second— .
order | % 0603 —.0k3 | .03 0170 011 280 1.00 7.5 -2k
sg;k— Theory .37 .0615 —.043 .034 " L0172 01k .300 1.00 7.4 .26

Nots: For each wing the experimentel wvalue is given first snd the corresponding theoretical valme indicated inw
parentheses direotly below., Whers an asterisk is mmed, the theoretlcal walue has not been computed. The
theoretical values for all quantitiee In ths isble pertaining to drag and lift-—drag ratio includs the pressurs
drag anly. ’
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(a) Aspect—ratio series.
Figure 1.— Models.
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Figure 1l.— Contlnued.

(b) Taper—ratio series.
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(¢) Model mounted in tunmnel.
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Figure 2.- Concludsd.

(b} Taper - ratio seriss.
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Lift -curve slope at zero Iift

Angle of zero

N NACA RM

No. A8E06

My=1.53
————— Linear theory
(wing alone)

Section value
> .06 ———
3 | —O— ]

L) =
% 04 2 /
S i L Theory and experiment coincide
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Aspect ratlo A

(@) Lift - curve slope.
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Aspect ratio A

(b) Angle of zero lift.

Figure 5.- Lift characteristics of aspect - ratio series.
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My=153
————— Linear theory
(wing alone)
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(a) Lift - curve s/lope.
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Taper ratio c;/c,

(b) Angle of zero Jift.

Figure 6.- LIft characteristics of faper - ratio series.
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Moment coef ficient

at zero [lift Cmy -0

Average moment - curve
slope (dCp,/dCy )py
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NACA RM No. A8E06

Seclion value
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My=1.53
_____ Linear theory
(wing alone)
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(a) Average morment - curve slope.

Aspect ratio A

€

00 / 2 3 4 5 6
i I U W B S SR A S 5
~10 |

(b) Moment coef ficient at zero lift.
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Figure 7. - Moment characteristics of aspect - ratio serigs.
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Moment coefficient

M,=153
————— Linear theory
(wing alone)
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(a) Average moment - curve slope.

S Taper ratio c;/c,

~1

$ 0 2 4 T 6 8 L0

3\: _05<:_ sag— O S e S e e [ g mp—

S

e -/0

S~

S

(b) Moment coefficient at zero /ift.

Figure 8.- Moment characteristics of faper -ratio series.
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Lift coefficient for

NACA RM No, A8EO6

_ M,=153
————— Linear theory
{wing alone)
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(b) Lift coefficient for minimum drag .

Figure 9.- Minfmum-drag characteristics of aspect-ratio

series.
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————— Linear theory
(wing aloneg)
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Figure [0.- Minimum-drag characfteristics of taper -ratio

series.

o7



Relative inclination of change

Drag - rise factor AC,/(4G,) 2

/n resultant force /ra'
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—— Linear theory
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(b) Relative inclination of change in resultant force.

Figure 11.- Drag - rise characteristics of aspect - ratio series.
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M, =153
_____ Linear theory °
§ (wing alone)
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Figure 12.- Drag - rise characteristics of faper - ratio series.
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Optimum [ift
coefficient C‘,_op ;

Maximum [ift-drag ratio (L/D)max
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Linear theory
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(b) Optimum [lift coefficient.

Figure 13.- Maximum [lift - drag characteristics of aspect -

ratio series.
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Figure 14.- Maximum [lift - drag characteristics of faper -

ratio series.
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B & Line pressure source (h=f)
s Mach line (h=1)

g
(a) Wing areas affected by primary loading
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AN _ Mach line (g=1)
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(b) Wing area affected by decremental loading

\/

Figure 15. - Areas of wing U -4 affected by primary and
decremental loadings. FITETY, o
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(a) Integration areas for first term of equation (4 /6)
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(b) Integration area for second term of equation (4 /6)
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Figure /6.~ Integration areas and /imits for equation (A /6).
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Mach line (h=1
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(c) Integration areas for second term of equation (A /6)
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Figure /6. - Concluded.
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